• About
  • Get Started
  • Guides
  • ValidMind Library
    • ValidMind Library
    • Supported Models
    • QuickStart Notebook

    • TESTING
    • Run Tests & Test Suites
    • Test Descriptions
    • Test Sandbox (BETA)

    • CODE SAMPLES
    • All Code Samples · LLM · NLP · Time Series · Etc.
    • Download Code Samples · notebooks.zip
    • Try it on JupyterHub

    • REFERENCE
    • ValidMind Library Python API
  • Support
  • Training
  • Releases
  • Documentation
    • About ​ValidMind
    • Get Started
    • Guides
    • Support
    • Releases

    • Python Library
    • ValidMind Library

    • ValidMind Academy
    • Training Courses
  • Log In
    • Public Internet
    • ValidMind Platform · US1
    • ValidMind Platform · CA1

    • Private Link
    • Virtual Private ValidMind (VPV)

    • Which login should I use?
  1. Supported models

EU AI Act Compliance — Read our original regulation brief on how the EU AI Act aims to balance innovation with safety and accountability, setting standards for responsible AI use

  • ValidMind Library
  • Supported models

  • QuickStart
  • Quickstart for model documentation
  • Install and initialize ValidMind Library
  • Store model credentials in .env files

  • Model Development
  • 1 — Set up ValidMind Library
  • 2 — Start model development process
  • 3 — Integrate custom tests
  • 4 — Finalize testing & documentation

  • Model Validation
  • 1 — Set up ValidMind Library for validation
  • 2 — Start model validation process
  • 3 — Developing a challenger model
  • 4 — Finalize validation & reporting

  • Model Testing
  • Run tests & test suites
    • Add context to LLM-generated test descriptions
    • Configure dataset features
    • Document multiple results for the same test
    • Explore test suites
    • Explore tests
    • Dataset Column Filters when Running Tests
    • Load dataset predictions
    • Log metrics over time
    • Run individual documentation sections
    • Run documentation tests with custom configurations
    • Run tests with multiple datasets
    • Intro to Unit Metrics
    • Understand and utilize RawData in ValidMind tests
    • Introduction to ValidMind Dataset and Model Objects
    • Run Tests
      • Run dataset based tests
      • Run comparison tests
  • Test descriptions
    • Data Validation
      • ACFandPACFPlot
      • ADF
      • AutoAR
      • AutoMA
      • AutoStationarity
      • BivariateScatterPlots
      • BoxPierce
      • ChiSquaredFeaturesTable
      • ClassImbalance
      • DatasetDescription
      • DatasetSplit
      • DescriptiveStatistics
      • DickeyFullerGLS
      • Duplicates
      • EngleGrangerCoint
      • FeatureTargetCorrelationPlot
      • HighCardinality
      • HighPearsonCorrelation
      • IQROutliersBarPlot
      • IQROutliersTable
      • IsolationForestOutliers
      • JarqueBera
      • KPSS
      • LaggedCorrelationHeatmap
      • LJungBox
      • MissingValues
      • MissingValuesBarPlot
      • MutualInformation
      • PearsonCorrelationMatrix
      • PhillipsPerronArch
      • ProtectedClassesCombination
      • ProtectedClassesDescription
      • ProtectedClassesDisparity
      • ProtectedClassesThresholdOptimizer
      • RollingStatsPlot
      • RunsTest
      • ScatterPlot
      • ScoreBandDefaultRates
      • SeasonalDecompose
      • ShapiroWilk
      • Skewness
      • SpreadPlot
      • TabularCategoricalBarPlots
      • TabularDateTimeHistograms
      • TabularDescriptionTables
      • TabularNumericalHistograms
      • TargetRateBarPlots
      • TimeSeriesDescription
      • TimeSeriesDescriptiveStatistics
      • TimeSeriesFrequency
      • TimeSeriesHistogram
      • TimeSeriesLinePlot
      • TimeSeriesMissingValues
      • TimeSeriesOutliers
      • TooManyZeroValues
      • UniqueRows
      • WOEBinPlots
      • WOEBinTable
      • ZivotAndrewsArch
      • Nlp
        • CommonWords
        • Hashtags
        • LanguageDetection
        • Mentions
        • PolarityAndSubjectivity
        • Punctuations
        • Sentiment
        • StopWords
        • TextDescription
        • Toxicity
    • Model Validation
      • BertScore
      • BleuScore
      • ClusterSizeDistribution
      • ContextualRecall
      • FeaturesAUC
      • MeteorScore
      • ModelMetadata
      • ModelPredictionResiduals
      • RegardScore
      • RegressionResidualsPlot
      • RougeScore
      • TimeSeriesPredictionsPlot
      • TimeSeriesPredictionWithCI
      • TimeSeriesR2SquareBySegments
      • TokenDisparity
      • ToxicityScore
      • Embeddings
        • ClusterDistribution
        • CosineSimilarityComparison
        • CosineSimilarityDistribution
        • CosineSimilarityHeatmap
        • DescriptiveAnalytics
        • EmbeddingsVisualization2D
        • EuclideanDistanceComparison
        • EuclideanDistanceHeatmap
        • PCAComponentsPairwisePlots
        • StabilityAnalysisKeyword
        • StabilityAnalysisRandomNoise
        • StabilityAnalysisSynonyms
        • StabilityAnalysisTranslation
        • TSNEComponentsPairwisePlots
      • Ragas
        • AnswerCorrectness
        • AspectCritic
        • ContextEntityRecall
        • ContextPrecision
        • ContextPrecisionWithoutReference
        • ContextRecall
        • Faithfulness
        • NoiseSensitivity
        • ResponseRelevancy
        • SemanticSimilarity
      • Sklearn
        • AdjustedMutualInformation
        • AdjustedRandIndex
        • CalibrationCurve
        • ClassifierPerformance
        • ClassifierThresholdOptimization
        • ClusterCosineSimilarity
        • ClusterPerformanceMetrics
        • CompletenessScore
        • ConfusionMatrix
        • FeatureImportance
        • FowlkesMallowsScore
        • HomogeneityScore
        • HyperParametersTuning
        • KMeansClustersOptimization
        • MinimumAccuracy
        • MinimumF1Score
        • MinimumROCAUCScore
        • ModelParameters
        • ModelsPerformanceComparison
        • OverfitDiagnosis
        • PermutationFeatureImportance
        • PopulationStabilityIndex
        • PrecisionRecallCurve
        • RegressionErrors
        • RegressionErrorsComparison
        • RegressionPerformance
        • RegressionR2Square
        • RegressionR2SquareComparison
        • RobustnessDiagnosis
        • ROCCurve
        • ScoreProbabilityAlignment
        • SHAPGlobalImportance
        • SilhouettePlot
        • TrainingTestDegradation
        • VMeasure
        • WeakspotsDiagnosis
      • Statsmodels
        • AutoARIMA
        • CumulativePredictionProbabilities
        • DurbinWatsonTest
        • GINITable
        • KolmogorovSmirnov
        • Lilliefors
        • PredictionProbabilitiesHistogram
        • RegressionCoeffs
        • RegressionFeatureSignificance
        • RegressionModelForecastPlot
        • RegressionModelForecastPlotLevels
        • RegressionModelSensitivityPlot
        • RegressionModelSummary
        • RegressionPermutationFeatureImportance
        • ScorecardHistogram
    • Ongoing Monitoring
      • CalibrationCurveDrift
      • ClassDiscriminationDrift
      • ClassificationAccuracyDrift
      • ClassImbalanceDrift
      • ConfusionMatrixDrift
      • CumulativePredictionProbabilitiesDrift
      • FeatureDrift
      • PredictionAcrossEachFeature
      • PredictionCorrelation
      • PredictionProbabilitiesHistogramDrift
      • PredictionQuantilesAcrossFeatures
      • ROCCurveDrift
      • ScoreBandsDrift
      • ScorecardHistogramDrift
      • TargetPredictionDistributionPlot
    • Prompt Validation
      • Bias
      • Clarity
      • Conciseness
      • Delimitation
      • NegativeInstruction
      • Robustness
      • Specificity
  • Test sandbox beta

  • Notebooks
  • Code samples
    • Capital Markets
      • Quickstart for knockout option pricing model documentation
      • Quickstart for Heston option pricing model using QuantLib
    • Credit Risk
      • Document an application scorecard model
      • Document an application scorecard model
      • Document an application scorecard model
      • Document a credit risk model
      • Document an application scorecard model
    • Custom Tests
      • Implement custom tests
      • Integrate external test providers
    • Model Validation
      • Validate an application scorecard model
    • Nlp and Llm
      • Sentiment analysis of financial data using a large language model (LLM)
      • Summarization of financial data using a large language model (LLM)
      • Sentiment analysis of financial data using Hugging Face NLP models
      • Summarization of financial data using Hugging Face NLP models
      • Automate news summarization using LLMs
      • Prompt validation for large language models (LLMs)
      • RAG Model Benchmarking Demo
      • RAG Model Documentation Demo
    • Ongoing Monitoring
      • Ongoing Monitoring for Application Scorecard
      • Quickstart for ongoing monitoring of models with ValidMind
    • Regression
      • Document a California Housing Price Prediction regression model
    • Time Series
      • Document a time series forecasting model
      • Document a time series forecasting model

  • Reference
  • ValidMind Library Python API

On this page

  • What is a supported model?
  • Supported model types
    • Traditional statistical models
    • Machine learning models
    • Generative AI models
  • Supported modeling libraries and other tools
  • What's next
  • Edit this page
  • Report an issue

Supported models

Published

May 12, 2025

The ValidMind Library provides out-of-the-box support for testing and documentation for an array of model types and modeling packages.

What is a supported model?

A supported model refers to a model for which predefined testing or documentation functions exist in the ValidMind Library, provided that the model you are developing is documented using a supported version of our library. These model types cover a very large portion of the models used in commercial and retail banking.

​ValidMind does not limit our users to specific model types.
  • The ValidMind Library is extensible to support future model types or modeling packages to accomodate rapid developments in the AI space, including the advent of large language models (LLMs).
  • You always have the flexibility to implement custom tests and integrate external test providers.1
    1 
  • Implement custom tests
  • Integrate external test providers

Supported model types

Vendor models
​ValidMind offers support for both first-party models and third-party vendor models.

Traditional statistical models

Linear regression

Models relationship between a scalar response and one or more explanatory variables.

Logistic regression

Models relationship between a scalar response and one or more explanatory variables.

Time series

Analyzes data points collected or sequenced over time.

Machine learning models

Hugging Face-compatible models

  • Natural language processing (NLP) text classification — Categorizes text into predefined classes.
  • Tabular classification — Assigns categories to tabular dataset entries.
  • Tabular regression — Predicts continuous outcomes from tabular data.

Neural networks

  • Long short-term memory (LSTM) — Processes sequences of data, remembering inputs over long periods.
  • Recurrent neural network (RNN) — Processes sequences by maintaining a state that reflects the history of processed elements.
  • Convolutional neural network (CNN) — Primarily used for processing grid-like data such as images.

Tree-based models
(XGBoost / CatBoost / random forest)

  • Classification — Predicts categorical outcomes using decision trees.
  • Regression — Predicts continuous outcomes using decision trees.

K-nearest neighbors (KNN)

  • Classification — Assigns class by majority vote of the k-nearest neighbors.
  • Regression — Predicts value based on the average of the k-nearest neighbors.

Clustering

  • K-means — Partitions n observations into k clusters in which each observation belongs to the cluster with the nearest mean.

Generative AI models

Large language models (LLMs)

  • Classification — Categorizes input into predefined classes.
  • Text summarization — Generates concise summaries from longer texts.

Supported modeling libraries and other tools

  • scikit-learn — A Python library for machine learning, offering a range of supervised and unsupervised learning algorithms.

  • statsmodels — A Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests and exploring data.

  • PyTorch — An open-source machine learning library based on the Torch library, used for applications such as computer vision and natural language processing.

  • Hugging Face Transformers — Provides thousands of pre-trained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, and text generation.

  • XGBoost — An optimized distributed gradient boosting library designed to be highly efficient, flexible, and portable, implementing machine learning algorithms under the Gradient Boosting framework.

  • CatBoost — An open-source gradient boosting on decision trees library with categorical feature support out of the box, for ranking, classification, regression, and other ML tasks.

  • LightGBM — A fast, distributed, high-performance gradient boosting (GBDT, GBRT, GBM, or MART) framework based on decision tree algorithms, used for ranking, classification, and many other machine learning tasks.

  • R models, via rpy2 - R in Python — Facilitates the integration of R's statistical computing and graphics capabilities with Python, allowing for R models to be called from Python.

  • Large language models (LLMs), via OpenAI-compatible APIs — Access to advanced AI models trained by OpenAI for a variety of natural language tasks, including text generation, translation, and analysis, through a compatible API interface. This support includes both the OpenAI API and the Azure OpenAI Service via API.

What's next

Run tests and test suites
​ValidMind provides many built-in tests and test suites, which help you produce documentation during stages of the model development lifecycle where you need to validate that your work satisfies MRM (model risk management) requirements.
Test descriptions
Tests that are available as part of the ValidMind Library, grouped by type of validation or monitoring test.
Code samples
Our Jupyter Notebook code samples showcase the capabilities and features of the ValidMind Library, while also providing you with useful examples that you can build on and adapt for your own use cases.
No matching items
ValidMind Library

© Copyright 2025 ValidMind Inc. All Rights Reserved.

  • Edit this page
  • Report an issue
Cookie Preferences
  • validmind.com

  • Privacy Policy

  • Terms of Use